Intracellular pH reduction prevents excitotoxic and ischemic neuronal death by inhibiting NADPH oxidase.

نویسندگان

  • Tina I Lam
  • Angela M Brennan-Minnella
  • Seok Joon Won
  • Yiguo Shen
  • Colleen Hefner
  • Yejie Shi
  • Dandan Sun
  • Raymond A Swanson
چکیده

Sustained activation of N-methyl-d-aspartate (NMDA) -type glutamate receptors leads to excitotoxic neuronal death in stroke, brain trauma, and neurodegenerative disorders. Superoxide production by NADPH oxidase is a requisite event in the process leading from NMDA receptor activation to excitotoxic death. NADPH oxidase generates intracellular H(+) along with extracellular superoxide, and the intracellular H(+) must be released or neutralized to permit continued NADPH oxidase function. In cultured neurons, NMDA-induced superoxide production and neuronal death were prevented by intracellular acidification by as little as 0.2 pH units, induced by either lowered medium pH or by inhibiting Na(+)/H(+) exchange. In mouse brain, superoxide production induced by NMDA injections or ischemia-reperfusion was likewise prevented by inhibiting Na(+)/H(+) exchange and by reduced expression of the Na(+)/H(+) exchanger-1 (NHE1). Neuronal intracellular pH and neuronal Na(+)/H(+) exchange are thus potent regulators of excitotoxic superoxide production. These findings identify a mechanism by which cell metabolism can influence coupling between NMDA receptor activation and superoxide production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O 22: Reactive Oxygen Species and Epilepsy

Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...

متن کامل

Tat-NR2B9c prevents excitotoxic neuronal superoxide production.

The Tat-NR2B9c peptide has shown clinical efficacy as a neuroprotective agent in acute stroke. Tat-NR2B9c is designed to prevent nitric oxide (NO) production by preventing postsynaptic density protein 95 (PSD-95) binding to N-methyl-D-aspartate (NMDA) receptors and neuronal nitric oxide synthase; however, PSD-95 is a scaffolding protein that also couples NMDA receptors to other downstream effec...

متن کامل

Nitric oxide from neuronal nitric oxide synthase sensitises neurons to hypoxia-induced death via competitive inhibition of cytochrome oxidase.

Hypoxia/ischaemia is known to trigger neuronal death, but the role of neuronal nitric oxide synthase (nNOS) in this process is controversial. Nitric oxide (NO) inhibits cytochrome oxidase in competition with oxygen. We tested whether NO derived from nNOS synergises with hypoxia to induce neuronal death by inhibiting mitochondrial cytochrome oxidase. Sixteen hours of hypoxia (2% oxygen) plus deo...

متن کامل

Neurobiology of Disease -Amyloid Peptides Induce Mitochondrial Dysfunction and Oxidative Stress in Astrocytes and Death of Neurons through Activation of NADPH Oxidase

-Amyloid ( A) peptide is strongly implicated in the neurodegeneration underlying Alzheimer’s disease, but the mechanisms of neurotoxicity remain controversial. This study establishes a central role for oxidative stress by the activation of NADPH oxidase in astrocytes as the cause of A-induced neuronal death. A causes a loss of mitochondrial potential in astrocytes but not in neurons. The mitoch...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 46  شماره 

صفحات  -

تاریخ انتشار 2013